不等式教学反思

更新时间:2023-02-08 15:30:14
不等式教学反思

作为一位优秀的老师,我们的任务之一就是课堂教学,教学反思能很好的记录下我们的课堂经验,教学反思应该怎么写才好呢?下面是小编为大家整理的不等式教学反思,仅供参考,大家一起来看看吧。

不等式教学反思1

本节课通过多媒体呈现习题,节省了大量的时间,充分利用了宝贵的课堂45分钟。通过学生自我训练、小组互帮和教师释疑,成功地解决了在新授过程中存在的部分遗留问题,达到了巩固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效。但在教学过程中我觉得还有如下遗憾:

在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有能够形成知识体系,没有能够构建完整的知识网络图。主要原因应该是:

1.知识网络图不是由学生自我总结得出的

2.没有和学生共同分析知识结构图中各部分内容之间的关联

3.网络图中做了链接,学生点击后进入链接内容,知识网络很快消失。

在今后的教学中,一定要让学生自我总结,自我设计知识结构图,教师引导规范由学生板书在黑板上,使之和课件中的结构基本一致,然后呈现课件中的知识结构图,再由学生点击进入下一阶段。

不等式教学反思2

本节课采用目标导向教学法,在整个教学中以实现目标为核心,启发引导学生观察思考、分析,并沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力。

一、导标、导学

教学过程中 ……此处隐藏9577个字……这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。

这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。

不等式教学反思15

今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的部分x的取值范围。

在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的教学是本课难点,每个老师在课堂上用各种不同的方法进行分析,协助学生理解。

陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。

《不等式教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式